
Software Engineering Technology

April 2006 www.stsc.hill.af.mil 19

Software development tools are com-
puter programs that help developers

create other programs. Such tools have
been in use since the early days of com-
puting to improve the efficiency of the
development process by automating mun-
dane translation operations and bringing
the level of abstraction closer to the appli-
cation engineer. Nowadays, development
tools are used in a variety of safety-critical
applications, including the aviation, auto-
motive, space, nuclear, railroad, medical,
and military industries, and contribute to
the risks associated with using respective
products. Despite these risks to society,
development tools are rarely qualified in a
sense comparable to product certification
in regulated industries. The objective of
this article is to look at the current state of
the tool qualification process, identify the
issues, and propose recommendations for
potential improvement, focusing on the
aviation industry.

System Certification Versus
Software Tool Qualification
Certification of airborne equipment is typ-
ically achieved through the Federal
Aviation Administration (FAA) authoriza-
tion of a type certificate (the entire air-
craft), supplemental type certificate (new
equipment in a specific aircraft), or a tech-
nical standard order (minimum perfor-
mance standard for materials, parts, and
appliances used on civil aircraft). A special
committee (SC-145) of the Radio Tech-
nical Commission for Aeronautics (RTCA)
convened in 1980 to establish guidelines
for developing airborne systems. The
report “Software Considerations in Air-
borne Systems and Equipment Certifica-
tion” was published in January 1982 as the
RTCA Document Order (DO)-178 (and
revised as DO-178A in 1985).

Due to rapid advances in technology,
the RTCA established a new committee

(SC-167) in 1989 with the objective of
updating the DO-178A by focusing on
five areas: documentation integration and
production, system issues, software devel-
opment, software verification, and soft-
ware configuration management and soft-
ware quality assurance. The resulting doc-
ument, DO-178B, provides guidelines for
applicants developing software-intensive
airborne systems [1, 2]. It discusses objec-
tives that need to be met to show that the
software development process provides
specified levels of safety assurance. It also
describes the processes and means of
compliance.

Systems are categorized by DO-178B
as meeting safety assurance levels A
through E based on their criticality in sup-
porting safe aircraft flight. The level A sys-
tem is the most critical: The failure of
such a system could result in a catastroph-
ic failure condition for the aircraft. The
level E system is the least critical: Such a
system has no effect on the operational
capability of the aircraft or pilot workload.
Although the RTCA DO-178B is the lead-
ing source of guidelines for software
developers engaged in such system con-
struction, two other documents have criti-
cal bearing on the subject. RTCA DO-
248B [3] clarifies some of the misinterpre-
tation of the DO-178B. The FAA Order
8110.49 compiles a variety of guidelines
related to the use of software in airborne
systems. Chapter 9 is specifically dedicated
to tool qualification [4].

A key component of the updated ver-
sion of DO-178B is the concept of tool
qualification elaborated in Section 12.
Qualification is a supplementary process
that the applicant may elect to follow in
the course of certifying an airborne sys-
tem. According to the definition given in
DO-178B, tool qualification is defined as,
“The process necessary to obtain certifica-
tion credit for a software tool within the

context of a specific airborne system.” It is
the certification authority that decides on
the outcome of the qualification process.
Moreover, qualification, if claimed, is a
requirement in getting a system certified.

Types of Software
Development Tools
DO-178B differentiates between verifica-
tion tools that cannot introduce errors but may
fail to detect them and development tools
whose output is part of airborne software and
thus can introduce errors. There is a signifi-
cant amount of effort involved to qualify
a verification tool, and much more to
qualify a development tool. However,
numerous development tools have been
used successfully in many certified pro-
jects without being qualified. To define a
subject matter more narrowly, we need to
take a closer look at the entire domain of
software development tools.

The landscape of modern software
development tools is very broad, as illus-
trated in Figure 1 (see page 20). Following
the traditional model of the development
process from requirements to implemen-
tation, we can identify the following:
• The requirements category that includes

tools used early in the life cycle to
identify and specify the software
requirements.

• The design category that includes tools
allowing developers to create architec-
tural and detailed design of the soft-
ware in a notation of their choice sup-
ported by the tool; often in this cate-
gory, tools translate the model to
source code.

• The implementation category that
includes all support required to trans-
late the computer code and transfer it
to the target computer.
As illustrated in Figure 1, three other

categories of tools can be identified: those
related to analysis, testing, and target.

The Qualification of Software Development 
Tools From the DO-178B Certification Perspective

Software development tools are in wide use among safety-critical system developers. Examples of such use include aviation, auto-
motive, space, nuclear, railroad, medical, and military applications. However, verification of tool output to ensure safety, man-
dated in highly regulated industries, requires enormous effort. If a tool is qualified, this effort can be reduced or even eliminat-
ed. The Radio Technical Commission for Aeronautics Document Order-178B and related documents provide guidelines by which
to qualify these tools. However, current regulations, business models, and industry practice make this goal difficult to accomplish.
This article discusses the qualification of development tools and the potential impact of this process on the aviation industry. 

Dr. Janusz Zalewski
Florida Gulf Coast University

Dr. Andrew J. Kornecki
Embry Riddle Aeronautical University



Software Engineering Technology

20 CROSSTALK The Journal of Defense Software Engineering April 2006

However, for this article, we will focus pri-
marily on the tools used in the design
phase, the central component of the soft-
ware development life cycle. They reflect
two diverse viewpoints on real-time, safety-
critical systems development, which result
from different developers’ backgrounds:
• Control engineers consider a system to

be a dynamic model consisting of well-
defined blocks of specific functionality
(logic, arithmetic, dynamic). The func-
tional paradigm of the model is the
basis for system simulation and analysis
of its behavior. Subsequently, the model
can be translated automatically into an
equivalent code, typically without any
additional developer’s involvement.

• Software engineers, on the other hand,
are familiar with the concepts of oper-
ating systems, programming languages,
software development methodologies,
and notations. The graphic notations
(classes, packages, states, transitions,
events) allow developers to represent
the structure and behavior of the target
system software as a set of components
that can be translated into programming
constructs (data structures, objects,
functions, etc.) using the automatic code
generation functionality of the tool.
Consequently, the software design

tools, which assist developers in translat-
ing the software requirements into source
code, can be categorized into two groups:
(a) a function-based, block-oriented approach
applied by control and system engineers,
and (b) a structure-based, object-oriented
approach applied by computer scientists
and software engineers.

The Qualification Process
A typical use for a design tool (software

producer) is to transform an input artifact
into output, thus creating another software
artifact. The current process mandates ver-
ification after each transformation. If this
transformation has an impact on the final
airborne product, the producer needs to be
qualified, but only if the transformation
output would not be verified and the trans-
formation leads to elimination, reduction,
or automation of any of the DO-178B
processes. The conditions under which a
development tool requires qualification are
presented in Figure 2 [4].

Software development tool qualifica-
tion is attempted only as an integral com-
ponent of a specific application program
requiring the FAA’s certification. The soft-
ware tools to be used are referenced with-
in the Plan for Software Aspects of
Certification (PSAC) and the Software
Accomplishment Summary documents of
the original certification project. If devel-
opment tool qualification is required, the
applicant should present for review the
Tool Operational Requirements (TOR) – a
document describing tool functionality,
environment, installation, operation man-
ual, development process, and expected
responses (also in abnormal conditions).

Two documents must be submitted and
approved: a Tool Qualification Plan, and a
Tool Accomplishment Summary as de-
scribed in [4]. To make an argument for
qualification, the applicant must demon-
strate correctness, consistency, and com-
pleteness of the TOR and show that the
tool complies with its TOR. This demon-
stration may involve a trial period during
which a verification of the tool output is
performed and tool-related problems are
analyzed, recorded, and corrected.

Other data required for review include

a Tool Configuration Management Index,
Tool Development Data, Tool Verification
Records, Tool Quality Assurance Records,
Tool Configuration Management Records,
etc. These requirements are also described
in [4]. Tool qualification data are approved
only in the context of the overall software
development for the specific system
where the intention to use the tool is stat-
ed in the PSAC. The tool itself does not
receive a separate qualification stamp of
approval. Therefore, using the tool on
another system/project requires a separate
qualification, although some qualification
credits may be reused.

Surveys requesting which tools are used
by industry were conducted at two national
conferences: the 2002 FAA National
Software Conference and the 2004 Embry
Riddle Aeronautical University/FAA Soft-
ware Tool Forum. In addition, two follow-
up e-mail solicitations were sent to more
than 500 professionals working on air-
borne systems. These surveys and solicita-
tions resulted in a relatively small sample of
responses that did not provide a base for
statistically significant results. The com-
ments included industry discouragement
regarding the rigor of development tool
qualification, and a justified perception of
the extensive cost of qualification.

Potential solutions to assist in commer-
cial off-the-shelf (COTS) development
tool qualification included extensive ven-
dor collaboration and using alternate means
allowed in DO-178B. The limited feedback
shows that there has been interest in qual-
ifying software development tools classi-
fied in the function-based/block-oriented
category, which cannot be said about
structure-based/object-oriented tools.

A short list of qualified development
tools includes code generators (Gener-
ation Automatique de Logiciel Avionique,
Graphical Processing Utility, Virtual
Application Prototyping System Code
Generator, Safety Critical Avionic
Development Environment Qualifiable
Code Generator) and configuration-
scheduling table generators (Universal
Table Builder Tool, Configuration Table
Generation Tool), most of them being in-
house products. According to several
informal exchanges with industry, many of
the modern COTS software development
suites actually have been used in the cre-
ation of software artifacts on certified
projects without going through the quali-
fication process.

Problems With Development
Tool Qualification
It is clear that qualification of develop-

Requirements

Tool

Structural

Design

Tool

Functional

Design

Tool

Typically With

Code Generator

Functionality

Implementation

Tool

Testing

Tool

Target

(with RTOS)

or/and

Tool Categories

Analysis

Tool

e.g.: 

VxWorks

QNX

OSE

Integrity

LynxOS

e.g.: 

CodeTest

TestRT

VectorCast

Insure++

Integrated

Development 

Environment 

(IDE)

e.g.: 

Tornado

Multi

e.g.: 

Rhapsody

RoseRT

STOOD

Artisan

e.g.: 

SCADE

Matlab

BEACON

Sildex

e.g.: 

RapidRMA

TimeWiz

e.g.: 

Reqtify

DOORS

SpecTRM

DOME

Figure 1:Software Tool Categories

Can

tool insert error

into airborne 

software?

Will 

the tool’s output 

NOT be verified

(as specified in

DO-178B)?

Are 

processes of

DO-178B eliminated,

reduced, or automated

by use of

tool?

TOOL MUST

BE QUALIFIED

NO

QUALIFICATION

NECESSARY

NO

NO

NO

YES

YES

YES

Figure 2:Conditions When a Software Development Tool Requires Qualification

Figure 1: Software Tool Categories



The Qualification of Software Development Tools From the DO-178B Certification Perspective

April 2006 www.stsc.hill.af.mil 21

ment tools is an option rarely exercised in
the airborne software industry. In fact,
one could argue that qualification of
development tools is not a viable option.
Current interpretation of applicable
guidelines makes development tool quali-
fication a proposition that is not practical
from a managerial viewpoint, and not easy
from a technical viewpoint.

Managerial Viewpoint
The first group of problems is of a regu-
latory and managerial nature. The major
hurdle is the current state of regulations
and guidelines. The secondary obstacle is
the business model and lack of incentives,
in particular the prohibitive cost of tool
qualification. The existing tools, often
used in certification projects, do not have
appropriate data to support arguments
about meeting the objectives of DO-
178B. The applicant team’s intent is to cer-
tify the product rather than expand effort
and qualify the tool. The tool vendor does
not see the business advantage of qualify-
ing a tool while disclosing proprietary
information to potential competitors.

Development tool qualification
requires close collaboration between the
tool vendor and the applicant. This is the
reason why in-house tools are more likely
to be qualified. Internal trade studies [5]
have shown that the cost of development
tool qualification is significantly higher
than the cost of verification tool qualifica-
tion. The use of qualified verification
tools can result in fast savings on the first
program where they are introduced. In
contrast, the use of qualified development
tools may require several programs to
make up the cost.

The intellectual property rights may
need to be waived by the vendor to achieve
qualification. The tool cannot be qualified
as standalone, but only within the scope of
a particular certification project. The tools
that could be considered for qualification
are very simple: typically in-house created
utilities where the applicant holds all intel-
lectual property rights, maintains all tool
development data, and can reuse the tool
software artifacts on consecutive projects.
The qualification is accomplished within
the specific certification project and thus is
not clearly visible from the outside as devel-
opment tool qualification.

Technical Viewpoint
The second group of problems is related
to technical aspects. According to the DO-
178B interpretation, the development tool
needs to be qualified to the same level of
scrutiny as the appropriate application it is
helping to develop. However, there is a sig-

nificant difference between tool software
and application software. Applications run
on a target computer while tools operate
on a general-purpose workstation, typical-
ly closely interacting with a COTS operat-
ing system and conventional programming
environment. Considering this, several
DO-178B objectives are not applicable to
tool software and thus cannot be met.
There is also no general agreement on
what metrics would allow developers to
carry an independent tool assessment [6].

One often-repeated statement regard-
ing development tool qualification is the
requirement that “only deterministic tools
can be qualified.” The DO-178B refers to
determinism as “… tools which produce
the same output for the same input data
when operating in the same environment.”
The definition does not take into account
how the output is generated. By this defin-
ition, one may interpret that it is not
required to provide proof on the internal
behavior of a tool. An example of this can
be memory use for a tool running on the
host workstation in a multitasking, multi-
user, networked environment. The prob-
lem is to define what the object code for a
tool is. Does it include the operating system
(OS) of the host workstation? A tool clear-
ly needs to make explicit calls to the OS
routines, and any verification of these
would require full visibility of the host’s OS
and related high assurance of its operation.

The main function of a software
development tool is to transform, i.e.,
translate an input artifact into output. This
is why the qualification, if applicable,
should be focused on this translation
component of the tool functionality.
However, modern, complex software
development tools provide a variety of
other functions that are not directly relat-

ed to the translation process. The transla-
tion component is hidden deep inside the
tool, which causes problems with tool
qualification. Typically, there is no access
to a COTS tool’s life-cycle data, which
describe the tool’s requirements, design,
and code. Unless the tool has been devel-
oped in-house, the qualification efforts
may be doomed.

Potential Solutions
The qualification of a stand-alone devel-
opment tool is not feasible in the strict
sense of existing guidelines. Such concepts
as component-based software, software
reuse, and service history should be
explored [7] to identify the feasibility of
such qualification. The issues of tool ver-
sion control and the precise definition of
operational environment, constraints, and
limitations are the basis for starting discus-
sion about solutions to tool qualification.
The availability of extensive tool software
development data, often scarce for COTS
products, may be a challenge to ever
accomplish COTS tool qualification [8].

It could be conceivable to create an
independent lab dedicated to tool qualifi-
cation and encourage commercial vendors
to submit their product for assessment. A
similar approach is known from other
areas of verification and validation [9, 10].
Another idea would be to require certified
product applicants to disclose information
regarding the development tool use and
qualification effort by creating an FAA-
sponsored database for DO-178B certi-
fied products. This could face serious
objections from industry due to an appre-
hensiveness to disclose any information,
which may result in the loss of commer-
cial advantage. It would be possible to
research a potential for development tool

Requirements

Tool

Structural

Design

Tool

Functional

Design

Tool

Typically With

Code Generator

Functionality

Implementation

Tool

Testing

Tool

Target

(with RTOS)

or/and

Tool Categories

Analysis

Tool

e.g.: 

VxWorks

QNX

OSE

Integrity

LynxOS

e.g.: 

CodeTest

TestRT

VectorCast

Insure++

Integrated

Development 

Environment 

(IDE)

e.g.: 

Tornado

Multi

e.g.: 

Rhapsody

RoseRT

STOOD

Artisan

e.g.: 

SCADE

Matlab

BEACON

Sildex

e.g.: 

RapidRMA

TimeWiz

e.g.: 

Reqtify

DOORS

SpecTRM

DOME

Figure 1:Software Tool Categories

Can

tool insert error

into airborne 

software?

Will 

the tool’s output 

NOT be verified

(as specified in 

DO-178B)?

Are 

processes of

DO-178B eliminated,

reduced, or automated

by use of

tool?

TOOL MUST

BE QUALIFIED

NO

QUALIFICATION

NECESSARY

NO

NO

NO

YES

YES

YES

Figure 2:Conditions When a Software Development Tool Requires Qua

Figure 2: Conditions When a Software Development Tool Requires Qualification 



Software Engineering Technology

22 CROSSTALK The Journal of Defense Software Engineering April 2006

qualification using an approach different
than the one outlined in Section 12.2 of
DO-178B. Service history and formal
methods could both be potential options.

It appears that the industry has a
pressing need to come up with methods to
audit a tool that is independent of the spe-
cific program and applications using it.
This would require updating the guidelines
to consider a model-driven development
paradigm, redefine the qualification
process, and allow flexibility regarding
qualification to be less dependent on the
application program using the tool. A
more streamlined method to qualify devel-
opment tools and to keep them current as
technology advances would be useful.
Better guidance on how to apply service
history and how to address what has to be
done for incremental tool changes would
also be needed. These and other issues
have been discussed at the recent Tools
Forum [11]. The RTCA convened another
special committee (SC-205) with a charge
to recommend modifications to the exist-
ing DO-178B. The qualification of soft-
ware tools is being discussed and some
changes may be forthcoming.u

Acknowledgement
The presented work was supported in part
by the Aviation Airworthiness Center of
Excellence under contract DTFA-0301
C00048 sponsored by the FAA. Findings
contained herein are not necessarily those
of the FAA. Additional support was
received from the Florida Space Grant
Consortium under Grant No. UCF01-
E000029751.

References
1. Radio Technical Commission for

Aeronautics, Inc. “RTCA DO-178B,
Software Considerations in Airborne
Systems and Equipment Certifica-
tion.” Advisory Circular. Washington,
D.C.: RTCA, 1 Dec. 1992 <www.rtca.
org/downloads/ListOfAvailableDocs
APR%202005.htm#_Toc101071800>.

2. Federal Aviation Administration.
“RTCA Inc., Document RTCA/DO-
178B.” Advisory Circular No. 20-115B.
Washington, D.C.: U.S. Department of
Transportation, Nov. 1993 <www.air
web.faa.gov/Regulatory_and_Guid
a n c e _ L i b r a r y / r g A d v i s o r y C i r c
ular.nsf/0/DCDB1D2031B19791862
569AE007833E7?OpenDocument>.

3. Radio Technical Commission for
Aeronautics, Inc. “RTCA DO-248B,
Final Report for Clarification of DO-
178B ‘Software Considerations in
Airborne Systems and Equipment
Certification’.” Advisory Circular.

Washington, D.C.: RTCA, 10 Dec.
2001 <www.rtca.org/downloads/List
OfAvailableDocsAPR%202005.htm#
_Toc101071717>.

4. Federal Aviation Administration.
“Software Approval Guidelines.” FAA
Order 8110.49. Washington, D.C.:
FAA, 2003 (Chapter 9 replaces FAA
Notice N8110.91 of 2001) <www.air
web.faa.gov/Regulatory_and_Guid
ance_Library/rgOrders.nsf/0/640711
B7B75DD3D486256D3C006F034F?
OpenDocument&Highlight=8110.49>.

5. Potter, Bill. “Use of the MathWorks
Tool Suite to Develop DO-178B Cer-
tified Code.” Slide No. 13. Honeywell,
May 2004 <http://faculty.erau.edu/
korn/ToolForum/potter.htm>.

6. Kornecki A., and J. Zalewski. Criteria
for Software Tools Evaluation in the
Development of Safety-Critical Real-
Time Systems. Proc. of PSAM-7/ Euro-
pean Safety and Reliability Conference,
Berlin, Germany, 14-18 June 2004.
London: Springer-Verlag, 2004 <http://
facu l t y. e rau .edu/kor n/papers/
ESREL04KorneckiZalewski.pdf>.

7. Lougee, H. “DO-178B Certified Soft-
ware: A Formal Reuse Analysis Ap-
proach.” CrossTalk Jan. 2005
<www.stsc.hill.af.mil/crosstalk/2005/
01/0501lougee.html>.

8. Zalewski, J., W. Ehrenberger, F.
Saglietti, J. Gorski, and A. Kornecki.
“Safety of Computer Control Systems:
Challenges and Results in Software
Development.” Annual Reviews in Con-
trol 27.1 (2003): 23-37.

9. Brosgol, B.M. “ADA in the 21st
Century.” CrossTalk Mar. 2001
<www.stsc.hill.af.mil/crosstalk/2001/
03/brosgol.html>.

10. Adams, M., et al. “Conformance
Testing of VMEbus and Multibus II
Products.” Advanced Multi-Micro-
processor Bus Architectures. Ed. J.
Zalewski. Los Alamitos, CA.: IEEE
Computer Society Press, 1995: 392-399.

11. Embry Riddle Aeronautical Universi-
ty/FAA Software Tools Forum,
Embry Riddle Aeronautical University,
Daytona Beach, FL., May 18-19, 2004
<www.erau.edu/db/campus/software
toolsforum.html>.

About the Authors

Andrew J. Kornecki,
Ph.D., is a professor at
the Department of Com-
puter and Software Engi-
neering, Embry Riddle
Aeronautical University.

He has more than 20 years of research
and teaching experience in areas of real-
time computer systems. Kornecki con-
tributed to research on intelligent simula-
tion training systems, safety-critical soft-
ware systems, and served as a visiting
researcher with the Federal Aviation
Administration (FAA). He has been con-
ducting industrial training on real-time,
safety-critical software in medical and avi-
ation industries and for the FAA Certi-
fication Services. Recently, he has been
engaged in work on certification issues
and assessment of development tools for
real-time, safety-critical systems.

Dept. of Computer and 
Software Engineering
Embry Riddle Aeronautical University
600 Clyde Morris BLVD 
Daytona Beach, FL 32114 
Phone: (386) 226-6888
Fax: (386) 226-6678 
E-mail: kornecka@erau.edu

Janusz Zalewski, Ph.D.,
is a professor of comput-
er science at Florida Gulf
Coast University. Prior to
this, he worked for various
nuclear research institu-

tions, including the Data Acquisition
Group of Superconducting Super Collider
and Computer Safety and Reliability
Center at Lawrence Livermore National
Laboratory. He also worked on projects
and consulted for a number of private
companies, including Lockheed Martin,
Harris, and Boeing. Zalewski served as a
chairman of the International Federation
for Information Processing Working
Group 5.4 on Industrial Software Quality,
and of an International Federation of
Automatic Control Technical Committee
on Safety of Computer Control Systems.
His major research interests include safety-
related, real-time computer systems.

Dept. of Computer Science
Florida Gulf Coast University
10501 FGCU BLVD
Fort Myers, FL 33965
Phone: (239) 590-7317
Fax: (239) 590-7330
E-mail: zalewski@fgcu.edu




